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FLOWS RESULTING FROM THE INCIDENCE

OF A DISCONTINUOUS WAVE ON A BOTTOM STEP

UDC 519.63V. V. Ostapenko and A. A. Malysheva

The solvability of the problem of the flows resulting from the incidence of a discontinuous wave on a
bottom step is studied using a single-layer shallow water model. Solutions in which the total energy
of the flow is conserved at the step and those in which it is lost at the step are considered. Regions
of double and triple hystereses in the obtained self-similar solutions are found. An analogy is drawn
with the problem of single-layer flow over a bottom obstacle.

Key words: shallow water, discontinuous wave, bottom step.

1. Formulation of the Problem. In the case of a rectangular channel of constant width and variable
depths and ignoring friction, the single-layer shallow water differential equations [1–4] are written as

ht + qx = 0; (1.1)

qt + (qv)x + ghzx = 0, (1.2)

where h(x, t), q(x, t), v = q/h, and z = b + h are the fluid depth, flow rate, velocity, and level, respectively,
b(x) is the coordinate of the channel bottom, and g is the gravity acceleration. Equation (1.1) represents the mass
conservation law, and Eq. (1.2) the conservation law for the total momentum. These conservation laws imply the
Hugoniot conditions [1, 4]:

D[h] = [q]; (1.3)

D[q] = [qv + gh2/2], (1.4)

which link the flow parameters of a discontinuous wave propagating at a speed D over an even bottom. In formu-
las (1.3) and (1.4), [f ] denotes the jump of the function f at the discontinuous wave front.

For system (1.1), (1.2), we consider the problem of initial discontinuity decay

z(x, 0) =
{
z1, x < 0,
z0, x > 0,

z1 > z0, v(x, 0) =
{
v1, x < 0,
0, x > 0,

v1 > 0 (1.5)

above a bottom level jump

b(x) =
{

0, x < 0,
δ, x > 0,

z0 > δ > 0. (1.6)

Here the flow parameters z1 = h1, v1 to the left of the discontinuity (1.6) satisfy the condition

v1 = vs(z1, z0), (1.7)

in which

v = us(h) = vs(h, z0) = (h− z0)
√
g(h+ z0)/(2hz0), h > z0 (1.8)
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Fig. 1. Profile of the initial discontinuous wave incident on the bottom step.

is the equation of the shock s-adiabat [4]. Equation (1.8), which is obtained from the Hugoniot conditions (1.3)
and (1.4), links the flow parameters h0 = z0 and v0 = 0 ahead of the discontinuous wave front with their possible
values (h and v) behind its front. Since z1 > z0, v1 > 0, and q(0, t) > 0 at t > 0 and, in view of the nomenclature
adopted in [5], the discontinuity (1.6) represents the bottom step on which water flows. Thus, in view of (1.7)
and (1.8), the self-similar solutions of the problem (1.1)–(1.6) describe the flows resulting from the incidence of
a discontinuous wave on a bottom step (Fig. 1). The speed of propagation of this initial discontinuous wave is
calculated by the formula

D1 = D(z1, z0) =
√
gz1(z1 + z0)/(2z0). (1.9)

For x < 0, the solution of the problem (1.5)–(1.8) will be called the flow to the left of the step, and for x > 0, it will
be called the flow to the right of the step; for x = 0 − 0, the value of the exact solution at the discontinuity (1.6)
will be called the flow ahead of the step, and for x = 0 + 0, it will be called the flow at the step.

The problem (1.5)–(1.8) is a particular case of the general problem of the arbitrary discontinuity decay
above a bottom level jump, which was studied in [6], where qualitatively different examples of its solution were
constructed under the assumption that the total energy of the flow is conserved at the discontinuity (1.6). However,
in [6] the uniqueness of these solutions was not studied and the regions of their existence were not found. The
unique solvability of the problem (1.5), (1.6) for v1 = 0 (the problem of dam break above a bottom step [7]) was
studied in [8], and a comparison with results of laboratory experiments is given in [9]. Self-similar solutions of the
problem (1.5), (1.6) for v1 = 0 and δ < 0, where it becomes the problem of dam break above a bottom step, are
constructed in [10, 11], and a comparison of these solutions with experiment is performed in [12].

In the present paper, which is a continuation of [8, 11], we study the solvability of the generalized problem
(1.5)–(1.8) of the flows resulting form the incidence of a discontinuous wave on a bottom step. Because the shallow
water equations (1.1) and (1.2) are a simple example of the strongly nonlinear hyperbolic system of conservation
laws [13] that is equivalent to the system of equations of isentropic gas dynamics [14] with an isentropic exponent
γ = 2, the solution for these equations of the generalized problem of discontinuity decay (1.5)–(1.8) is sought,
following [15], in the form of a combination of simple waves, a stationary jump located at the coordinate origin
above the bottom step, and constant-flow regions connecting them. This is done using the generalized method of
adiabats, which was first time used in [16] to solve the problem of the decay of a gas-dynamic discontinuity in a
channel with a cross section jump. This method gives four qualitatively different types of steady-state self-similar
solutions of the problem (1.5)–(1.8): in three of them the total energy of the flow is conserved at the bottom step,
and in one it is lost at the bottom step. The regions of existence of these solutions are plotted on the plane of the
dimensionless determining parameters δ and z1 obtained for g = z0 = 1. Subregions of double and triple hystereses,
i.e., subregions in which two or three different self-similar solutions occur simultaneously, are found. The solutions
constructed are compared with the solutions of the problem of single-layer flow over a long obstacle at the bottom
[3, 17–19].

2. Self-Similar Solutions with a Reflected Discontinuous Wave. To construct the self-similar
solutions of the discontinuity decay problem formulated in Sec. 1, it is necessary to specify relations for the flow
parameters at the discontinuity arising above the bottom step (1.6). Following [8, 11], for such a discontinuity we
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Fig. 2. Wave profiles arising after the passage of the initial discontinuous wave above the bottom step
for the case of subcritical flow ahead of the step: 1) flow described by a solution of type A; 2) flow
described by a solution of type B.

Fig. 3. Diagram of adiabats for constructing solutions of type A and B.

first assume the satisfaction of the mass conservation law (1.1) and the conservation law for the local momentum

vt + (v2/2 + gz)x = 0, (2.1)

and hence, as shown in [20], the conservation law for the total energy

et + (q(v2/2 + gz))x = gbqx, (2.2)

where e = (qv+gh2)/2 is the total energy of the incident flow. Equations (2.1) and (2.2) are differential consequences
of system (1.1), (1.2) for its smooth solutions. The Hugoniot conditions for the conservation laws (1.1) and (2.1)
at a standing jump with a propagation speed of D = 0 are written as

[q] = 0, [v2/2 + gz] = 0, (2.3)

i.e., at such a jump, the flow rate and the Bernoulli constant are continuous.
The depth and flow velocity at the step will be denoted as h and v and those ahead of the step by H and

V , respectively. Then, relations (2.3) are written as

J(H, q) = J(h, q) + δ, q = hv = HV, (2.4)

where J(y, q) = q2/(2gy2) + y. As shown in [20], relations (2.4) specify two mappings F+ and F−. The first
mappings F+ transforms each flow at the step (with parameters h and v) to subcritical flow (with H+ and V+) and
the second mapping F− transforms to supercritical flow ahead of the step (with parameters H− and V−). In the
region of subcritical and critical flows (v ≤ √

gh), the steady-state discontinuity above the step is specified by the
mapping F+, and in the region of supercritical flows (v >

√
gh), it is specified by the mapping F−.

After the initial discontinuous wave has passed over the bottom step, a new discontinuous wave propagates
to the right of the step (Fig. 2); the flow parameters behind the front of this wave (h2 and v2) lie on the shock
s-adiabat

v = vs(h) = vs(h, h0) = (h− h0)
√
g(h+ h0)/(2hh0), h > h0. (2.5)

In Fig. 3, the curves us, vs, and vc show the shock s-adiabats (1.8) and (2.5) and the set of critical flows

v = vc(h) =
√
gh, (2.6)

and the curves v+
c = F+[vc] and v+

s = F+[vs] show the images obtained of the set (2.6) and the part of the shock
s-adiabat (2.5) lying in the region of subcritical flows (below the point A in Fig. 3) under the mapping F+.
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Let us introduce the auxiliary function

v = v+(h) =
{
v+

s (h), z0 < h ≤ hB,

v+
c (h), h ≥ hB,

(2.7)

where B = (hB, vB) is the point of intersection of the plots of the functions v+
s and v+

c . Since, as shown in [8], the
functions v+

s and v+
c are strictly monotonically increasing, the function v+ is also strictly monotonically increasing.

The solution of the problem (1.5)–(1.8) to the left of the step depends largely on the relative position of the shock
s-adiabat (1.8) and curve (2.7) in Fig. 3. The following theorem holds.

Theorem 1. The functions us(h) and v+(h) satisfy the inequality

us(h) > v+(h) ∀h > z0. (2.8)

This theorem is proved in Sec. 6. Theorem 1 implies that for h > z0, the plot of the adiabat us in Fig. 3 lies
above the plot of the function v+.

On the adiabat us we fix the point C = (hC , vC) of origin of the shock r-adiabat

v = vr(h, hC , vC) = vC − (h− hC)
√
g(h+ hC)/(2hhC), h > hC ,

which passes through the point B. The coordinates of the point C are found from the system of equations vC =
us(hC) and vB = vr(hB, hC , vC). The following theorem holds.

Theorem 2. The flow (hC , vC) is subcritical, i.e., vC <
√
ghC .

This theorem is proved in Sec. 7. Theorem 2 implies that the point C = (hC , vC) lies on the part of the
adiabat us that lies below the critical flow curve vc in Fig. 3.

We assume that the flow parameters (h1 and v1) behind the front of the initial discontinuous wave incident
on the step are not above the point C on the adiabat us, by virtue of which the depth h1 satisfies the inequalities
z0 < h1 ≤ hC . Then, the solution of the discontinuity decay problem (1.5)–(1.8) yields a reflected discontinuous
wave propagating against the background (h1 and v1) with the flow parameters (h3 and v3) behind the front of
this wave uniquely determined from the equations v3 = vr(h3, h1, v1) = v+

s (h3) as the coordinates of the point
of intersection of the strictly monotonically decreasing shock r-adiabat v = vr(h, h1, v1) with origin at the point
(h1, v1) on the adiabat us with the plot of the strictly monotonically increasing function v+

s . In this case, the
subcritical or critical constant flow behind the front of the discontinuous wave propagating behind the step starts
directly from the step and its parameters h2 and v2 are calculated as the coordinates of the point of intersection of
the adiabat vs with the hyperbola

v = vq(h, h3, v3) = q/h (q = h3v3) (2.9)

with origin at the point (h3, v3).
The speed of the discontinuous wave propagating behind the step is determined with allowance for (1.9)

from the formula

D2 = D(h2, h0) =
√
gh2(h2 + h0)/(2h0), (2.10)

and the speed of the reflected discontinuous wave is found from the formula

D3 = v1 −D(h3, h1) = v1 −
√
gh3(h3 + h1)/(2h1). (2.11)

The resulting solution, whose profile is shown in Fig. 2 by curve 1, will be called flow of type A.
We now assume that h1 > hC , i.e., the point (h1, v1) lies above the point C on the adiabat us (see Fig. 3).

Then, the adiabat v = vr(h, h1, v1) intersects the plot of the function (2.7) in the line v+
c , by virtue of which the flow

parameters (h3, v3) behind the front of the reflected discontinuous wave are uniquely determined from the equations
v3 = vr(h3, h1, v1) = v+

c (h3). In this case, the flow at the step is critical and its parameters are h4 = 3
√
q2/g and

v4 = 3
√
gq, where q = h3v3, are calculated as the coordinates of the point of intersection of hyperbola (2.9) with the

critical-flow curve (2.6). The flow to the right of the step is supercritical and does not influence the flow parameters
at the step and to the left of it. To construct the solution describing this flow, it is necessary to solve the classical
problem of discontinuity decay above a horizontal bottom for the system of shallow water equations [1, 4] with the
following initial data:

h(x, 0) =
{
h4, x ≤ 0,
h0, x > 0,

v(x, 0) =
{
v4, x ≤ 0,
0, x > 0.

(2.12)
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The solution of the problem (2.12) yields a discontinuous s-wave and a centered depression r-wave, which
are connected by a region of constant flow, whose parameters h2 and v2 are determined as the coordinates of the
point of intersection of the shock s-adiabat (2.5) with the wave r-adiabat

v = vr(h, h4, v4) = v4 + 2
√
g (

√
h4 −

√
h ), h < h4. (2.13)

Adiabat (2.13) issues from the point (h4, v4), which lies on the critical-flow curve vc to the right of the point A
(see Fig. 3) at which this curve is intersected with the shock adiabat vs. The flow parameters in the centered
depression r-wave are calculated by the formulas [1, 4]

h(x, t) =
(3v4 − ξ)2

9g
, v(x, t) = v4 +

2
3
ξ, 0 ≤ ξ =

x

t
≤ v2 − c2, c2 =

√
gh2. (2.14)

The propagation speeds of the discontinuous waves are determined, as before, from formulas (2.10) and (2.11). The
resulting solution, whose profile is shown by curve 2 in Fig. 2, will be called a solution of type B.

Solutions of type B are meaningful only if D3 < 0 (D3 is the speed of the reflected discontinuous wave).
From this inequality it follows that on the adiabat us, the point (h1, v1) should lie below the point G = (hG, vG),
whose coordinates hG = h∗1 and vG = v∗1 are found from the equality D3 = 0, which leads to the following system
of equations:

v∗1 = vs(h∗1, z0) = D(h∗3, h
∗
1), v∗3 = vr(h∗3, h

∗
1, v

∗
1), v∗4 =

√
gh∗4,

J(h∗3, q
∗) = J(h∗4, q

∗) + δ, q∗ = h∗1v
∗
1 = h∗4v

∗
4 .

(2.15)

For D3 = 0, the reflected discontinuous wave coincides with the stationary discontinuity above the step, forming
together with it a unified standing jump, at which there is a loss of the total energy of the incident flow. Since the
flow ahead of the front of the standing jump is supercritical, the point G is on the part of the adiabat us located
in the region of supercritical flows in Fig. 3.

Thus, self-similar solutions of the discontinuity decay problem (1.5)–(1.8) are constructed under the con-
dition that the depth h1 behind the front of the discontinuous wave incident on the step satisfies the inequalities
z0 < h1 < hG.

3. Self-Similar Solutions with Supercritical Flow ahead of the Step. We will construct self-similar
solutions of the discontinuity decay problem (1.5)–(1.8) in which the constant supercritical flow (parameters h1

and v1) coincident with the flow behind the front of the initial discontinuous wave incident on the step (Fig. 4)
is conserved to the left of the step. In such solutions, the total momentum of the flow incident on the step is
sufficient to prevent upstream propagation of the effect of the step to the region x < 0 after the passage of the
initial discontinuous wave over the step. The indicated self-similar solutions can be of two types: solutions of type C,
in which conditions (2.4) representing the conservation of the total energy of the flow at the discontinuity above
the step are satisfied, and solutions of type D, in which the total energy of the flow is lost at the step.

We first consider solutions of type C. In [11], it is shown that the mapping F− specified by relations (2.4)
transforms the critical-flow function (2.6) to a monotonically increasing function v−c = F−[vc], whose plot is in the
region of supercritical flows (Fig. 5). We denote by P = (hP , vP ) the point of intersection of the adiabat us with
the curve v−c . The coordinates of this point are found from the system

vP = vs(hP , z0), J(hP , q) = J( 3
√
q2/g, q) + δ, q = hP vP .

In Fig. 5, the curve u−s = F−1
− [us], where F−1

− is the mapping inverse of F−, shows the image of the part of the
adiabat us located above the point P in the region of supercritical flows. As shown in [11], in the neighborhood of
the critical-flow curve, the function u−s (h) is two-valued.

We assume that the flow behind the front of the discontinuous wave incident on the step is supercritical and
the parameters of this flow h1 and v1 are not below the point P on the adiabat us, i.e., h1 ≥ hP . Then, solving the
discontinuity decay problem (1.5)–(1.8), we find that the constant flow (h1 and v1) persists to the left of the step;
in view of the stability conditions obtained in [17], this flow forms a flow (h4 and v4) at the step which is critical at
h1 = hP and supercritical at h1 > hP . The parameters of this flow h4 and v4 satisfy the inequalities h4 > h1 and
v4 < v1 and are determined as the image of the point (h1, v1) under the mapping F−1

− or, what is the same, as the
coordinates of the point of intersection of the curve u−s with the hyperbola vq(h, h1, v1).
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Fig. 5. Diagram of adiabats for constructing solutions of type C and D.

The solution to the right of the step is constructed, as for flows of type B, by soling the discontinuity decay
problem (2.12) above an even bottom. The solution of this problem yields a discontinuous s-wave propagating
at the speed (2.10) and a centered depression r-wave (2.14), in which ξ ∈ [v4 − c4, v2 − c2]. The constant-flow
parameters h2 and v2 between these waves are calculated as the coordinates of the point of intersection of the shock
s-adiabat (2.5) with the wave r-adiabat (2.13). The profile of the resulting solution of type C for h1 > hP is shown
by solid curve 1 in Fig. 4. The limiting case h1 = hP , where the left boundary of the depression wave is at the step
is given by dashed curve 2 in Fig. 4.

We now consider solutions of type D. As shown in [8], there are two classes of solutions in which the
total energy is lost at the bottom step: solutions in which two characteristics of system (1.1), (1.2) arrive at the
discontinuity (1.6) and solutions in which three characteristics of this system arrive at the discontinuity (1.6). In the
case of solutions of the first class, to close the shallow water model, one needs to modify the condition [v2/2+gz] = 0
by introducing in it an heuristic parameter that specifies the part of the total energy of the flow that is lost in
passing over through the bottom step. In the case of solutions of the second class, the continuity of the flow rate
is sufficient for the closure of the conditions at the discontinuity (1.6) [q] = 0. In this case, the part of the total
energy of the flow that is lost in passing over the step is uniquely determined within the framework of the shallow
water model without invoking any heuristic parameters. In the present paper, we consider only the second class of
solutions.
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In order that in a solution of type D three characteristics arrive at the discontinuity above the step, it is
necessary that the flow ahead of the step be supercritical and the flow at the step be critical. As shown in [8, 9], for
the energy stability of such a discontinuity, which is related to the loss of the total energy at it, it is necessary that
the flow parameters h1 and v1 lie above the point P on the adiabat us, i.e., it is necessary that the initial depth
satisfy the inequality h1 > hP . If this inequality is satisfied, the discontinuity decay problem (1.5)–(1.8) admits
energetically stable solutions of the second class in which the initial flow (h1, v1) is conserved to the left of the step,
and a critical flow forms at the step, whose parameters h4 = 3

√
q2/g and v4 = 3

√
gq, where q = h1v1, are calculated

as the coordinates of the point of intersection of the hyperbola v = vq(h, h1, v1) = h1v1/h with the critical-flow
curve vc. After determination of the values of h4 and v4, the flow to the right of the step is found, as in solutions
of type B, by solving the discontinuity decay problem (2.12) above an even bottom. The profile of the resulting
solution of type D is shown by curve 3 in Fig. 4. We note that in solutions of type C and D, as well as in solutions
of type B, the flow to the right of the step is supercritical and does not influence the flow parameters at the step
and to the left of it.

Since in the limiting case of solutions of type B, where D2 = 0 ⇒ h1 = hG, these solutions continuously
become energetically stable solutions of type D, the point G lies above the point P on the adiabat us (see Fig. 5).
This implies that hG > hP , and hence at the initial depth h1 ∈ (hP , hG), where the parameters of the initial flow
h1 and v1 lie between the points P and G on the adiabat us, the discontinuity decay problem (1.5)–(1.8) admits
three different solutions: solutions of type B, C, and D. If h1 ≥ hG, this problem admits two different solutions:
solution of type C and solution of type D. Thus, for h1 ∈ (hP , hG) triple hysteresis occurs, and for h1 ≥ hG, double
hysteresis occurs.

As an example, curves GQR and GQ̃R̃ in Fig. 5 show a diagram of constructing solutions of type C and D
obtained for the same initial depth h1 = hG at which there is a continuous transition of solutions of type B to
solutions of type D. The coordinates of the points Q = (h4, v4), Q̃ = (h̃4, ṽ4), R = (h2, v2), and R̃ = (h̃2, ṽ2), which
specify the parameters of the indicated solutions, satisfy the inequalities

h4 < h̃4, v4 > ṽ4, h2 > h̃2, v2 > ṽ2 ⇒ D2 > D̃2,

according to which curves 1 and 3 are plotted in Fig. 4.
As h1 → hP +0, i.e., as the parameters of the initial flow h1 and v1 tend from above along the adiabat us to

the point P (see Fig. 5), solutions of type D continuously become the limiting solution of type C, which is shown
by the dashed curve 2 in Fig. 4. However, this limiting solution is unstable against small changes in the initial
data: for h1 = hP − ε (ε � 1), it suddenly becomes a solution of type B with a reflected discontinuous wave and
subcritical flow (h3, v3) ahead of the step (see curve 2 in Fig. 2).

4. Regions of Existence of Constructed Solutions on the Plane of Determining Parameters.
Performing a homothetic transformation with respect to the time and space variables, we transform to dimensionless
values, for which g = z0 = 1. In this case, the solutions of the generalized problem of discontinuity decay (1.5)–
(1.8) are completely determined by the following two dimensionless parameters: the relative height of the step
δ = δ/z0 ∈ (0, 1) and the relative level (depth) of water z1 = h1 = z1/z0 > 1 behind the front of the initial
discontinuous wave incident on the step. Since the dimensionless speed v1 = v1/

√
gz0, which can be treated as the

Froude number in the problem in question, is uniquely related to the initial level z1 by the shock adiabat equation
v1 = us(z1) = vs(z1, z0), the introduced pair of determining parameters δ and z1 is similar to the pair of parameters
δ and v1, which is often used in the analysis of problems of single-layer flow over a bottom obstacle [3, 7, 19]. In our
case, the parameters δ and z1 are more convenient than parameters δ and v1 since the direct relation v1 = vs(z1, z0)
on the shock adiabat (1.8) is simpler and more generally accepted than its inverse relation z1 = v−1

s (v1, z0). In view
of this, the regions of existence of self-similar solutions of type A, B, C, and D in Fig. 6 are given on the plane of
the dimensionless determining parameters δ and z1.

The region of existence of solutions of type A (a typical profile of these solutions is shown by curve 1 in
Fig. 2) is located in Fig. 6 below curve 1, whose equation in the form of the dependence z1(δ) is determined as
follows. From the relations vA = vs(hA, h0) =

√
hA, where h0 = 1 − δ, we first calculate the coordinates hA(δ) and

vA(δ) of the point A at which the adiabat vs is intersected with the critical-flow curve vc in Fig. 3. As shown in [20],
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hA(δ) = z∗(1 − δ) ⇒ vA(δ) =
√
hA(δ) =

√
z∗(1 − δ),

where

z∗ = 1 +
4√
3

cos
(1

3
arccos

3
√

3
8

)
≈ 3.214 (4.1)

is the maximum root of the cubic equation z3 − 3z2 − z + 1 = 0. After that, from the system

J(hB, q) = J(hA(δ), q) + δ, q = hA(δ)vA(δ) = hBvB (4.2)

we find the coordinates hB(δ) and vB(δ) of the point B in Fig. 3, at which the curves v+
s and v+

c are intersected.
Then, from the system

vB(δ) = vr(hB(δ), hC , vC), vC = vs(hC , 1) (4.3)

we determine the coordinates hC(δ) and vC(δ) of the point C in Fig. 3 at which the shock adiabats us and vr are
intersected. As a result, the required relation z1(δ) is specified by the function z1 = hC(δ), whose plot is constructed
by numerical solution using the method of iterations of systems (4.2) and (4.3) for various values of δ ∈ (0, 1).

In Fig. 6, the region of existence of solutions of type B (whose typical profile is shown by curve 2 in Fig. 2)
is located between curves 1 and 4. The equation of curve 4 in the form of an explicit dependence δ(z1), where
z1 > z∗, is obtained from system (2.15) and can be written as

δ = J(h3, q) − J(h4, q) = (v2
3 − v2

4)/2 + h3 − h4,

where

v3 = q/h3, h3 = z1(
√

1 + 8f2
1 − 1)/2, f1 = v1/

√
z1

are the relations at the front of the reflected discontinuous wave for the case where it becomes a standing hydraulic
jump for D3 = 0;

v4 = 3
√
q, h4 = 3

√
q2, q = z1v1 (4.4)

are the critical-flow parameters at the step obtained as the coordinates of the point Q̃ in Fig. 5 at which the
hyperbola vq = q/h issuing from the point G is intersected with the critical-flow curve vc;

v1 = vs(z1, 1) = (z1 − 1)
√

(z1 + 1)/(2z1) (4.5)

is the relation (1.7) on the shock adiabat (1.8) obtained for z0 = 1.
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Since solutions of type C and D (typical profiles of these solutions are shown by curves 1 and 3 in Fig. 4)
occur when the point (z1, v1) lies on the shock adiabat us above the point P at which these adiabats are intersected
with the curve v−c = F−[vc] in Fig. 5, the region of existence of solutions of type C and D lies above curve 3 in
Fig. 6. The equation of curve 3 is obtained by writing the function v−c (h) as the following explicit dependence δ(z1):

δ = J(z1, q) − J(h4, q) = (v2
1 − v2

4)/2 + z1 − h4.

Here the quantities v4, h4, and v1, as functions of z1 > z∗, are specified by formulas (4.4) and (4.5). The dashed
curve 2 in Fig. 6 shows the critical level z1 = z∗ ≈ 3.214, at which the flow behind the front of the discontinuous
wave incident on the step is critical. For such an initial level of z1, flow of type B always occurs.

From the above analysis it follows that if the parameters δ and z1 lie below curve 3 in the diagram given
in Fig. 6, then the solution of the generalized discontinuity decay problem (1.5)–(1.8) is determined uniquely. If
these parameters are above curve 3, then hysteresis takes place. Between curves 3 and 4, this hysteresis is triple
(solutions of type B, C, and D can exist simultaneously), and above curve 4, it is double (solutions of type C and D
can exist simultaneously).

5. Analogy with the Problem of Flow past a Bottom Obstacle. A comparison of the diagram given
in Fig. 6 with a similar diagram of the regions of existence of the various solutions in the problem of single-layer
fluid flow past a bottom obstacle [3, 17–19] shows that this problem is in many respects similar to the problem of
the incidence of a discontinuous wave on a bottom step considered in the present study. In diagram of [17] also
has four main regions similar to those shown in Fig. 6. In this case, the solution of type A and the solution of
type C correspond to completely subcritical and completely supercritical flows over a bottom obstacle, respectively,
with only local perturbation of the incident flow. The solution of type B corresponds to flow at which the obstacle
blocks [17] (controls [3]) the upstream current, forming a reflected discontinuous wave. At the top of the obstacle
there is a transition from subcritical to supercritical flow.

In the problem of flow over a bottom obstacle there is a hysteresis region [3, 17] similar to that located
between curves 3 and 4 in Fig. 6. In this region both the completely supercritical and blocking solutions of this
problem can exist simultaneously (this result was supported experimentally in [18]). In [19], it is shown that in the
same region of determining parameters there is a third solution similar to the solution of type D, in which a standing
hydraulic jump forms at the upstream slope of the obstacles. In a linear approximation, this hydraulic jump is
unstable [19], but this does not imply that it is instable within the framework of the general nonlinear problem in
the case of small flow variations ahead of the obstacle and at its top. Indirect evidence of this is provided by the
results of a study [21], in which a steady-state standing hydraulic jump ahead of the bottom step was implemented
experimentally in a laboratory tank.

From [19] it follows that if the bottom step (1.6) models a monotonic elevation of a shelf-type bottom [9],
whose length far exceeds the width of the hydraulic jump located on it, the solution of type D describing this flow
ignoring bottom friction can exist only in the region of triple hysteresis, which corresponds to the segment of the
adiabat us between the points P and G in Fig. 5 and the region between curves 3 and 4 in Fig. 6. However, if
the bottom step (1.6) models a discontinuity of the bottom level of a real channel, whose roughness factor ahead
of the step is large enough, the energy loss at the standing jump ahead of the step can be much higher than that
in a similar standing jump above a smooth horizontal bottom. In this case, the solution of type D describing such
flow corresponds to the segment of the adiabat us lying above the point G in Fig. 5 and the region above curve 4
in Fig. 6. Thus, at for initial depth h1 > hG, double hysteresis can occur.

6. Proof of Theorem 1. We denote by (hA, vA) and (hF , vF ) the coordinates of the points A and F ,
at which the adiabats vs and us intersect the critical-flow curve vc in Fig. 3. Because the adiabat us for h > hF

lies in the region of supercritical flows and the plot of the function v+ defined by formula (2.7) is in the region of
subcritical flows for all h > z0, it follows that to prove Theorem 1, it suffices to show that inequality (2.8) is valid
for all h ∈ (z0, hF ).

Let us consider the function

v = v(h) =
{
vs(h), h0 < h ≤ hA,

vc(h), h ≥ hA,
(6.1)

whose image for the mapping F+ is the function v+. The plot of the function (6.1) consists of the part of the
adiabat vs located in the region of subcritical flows and the part of the critical-flow curve vc located to the right of
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the point A in Fig. 3. Let A1 = (ĥ, v̂) be a certain point that lies on the plot of the function (6.1) and satisfies the
condition h0 < ĥ < hF . We draw the hyperbola v = vq(h, ĥ, v̂) through the point A1. At some points B1 = (h+, v+)
and C1 = (H,V ), this hyperbola intersects the curve v+ and the adiabat us. To prove inequality (2.8), it suffices
to show that the point C1 lies on the hyperbola vq to the left of the point B1. The latter, as follows from [8], is
equivalent to satisfying the following inequality for H > ĥ:

J(ĥ, q) + δ > J(H, q), q = ĥv̂ = HV. (6.2)

This inequality implies that in transition from the flow ahead of the step (with parameters H and V ) to the flow
at the step (with parameters ĥ and v̂), the total energy of the incident flow increases.

We assume that the quantities h0, ĥ, and v̂ and, hence, q = ĥv̂, are fixed. Then, in view of the relation
δ = z0 − h0, inequality (6.2) can be written as

ϕ(H, z0) < ϕ(ĥ, h0) ∀H > ĥ, ϕ(h, z) = q2/(2gh2) + h− z, (6.3)

where the quantities H and z0 are related by the condition

HV = Hus(H) = H(H − z0)
√
g(H + z0)/(2Hz0) = q. (6.4)

From condition (6.4), the initial level z0 can be expressed as a function z0 = z(H) such that z(ĥ) = h0 for ĥ ≤ hA

and z(ĥ) > h0 for ĥ > hA. This implies that inequality (6.3) is satisfied provided that

ϕ(H, z(H)) < ϕ(ĥ, z(ĥ)) ∀H > ĥ. (6.5)

To prove inequality (6.5), it suffices to show that

d

dh
ϕ(h, z(h)) = 1 − q2

gh3
− zh < 0 ∀h > z(h). (6.6)

We introduce an auxiliary symmetric function ψ(h, z) = (h − z)2(h + z). Using this function, condition (6.4), to
which the quantities h and z(h) satisfy, can be written as

hψ(h, z(h))/z(h) = 2q2/g = const. (6.7)

Differentiating relation (6.7) with respect to h and taking into account that

ψh = (h− z)(3h+ z), ψz = (z − h)(3z + h),

we obtain

zh =
z(ψ + hψh)
h(ψ − zψz)

=
z(4h2 + zh− z2)
h(h2 + zh+ 2z2)

=
4y2 + y − 1
y(y2 + y + 2)

, (6.8)

where y = h/z > 1.
In view of (6.8), we have

1 − zh =
y3 − 4y2 + 2y + 1
y(y2 + y + 2)

=
(y − 1)(y2 − 3y − 1)

y(y2 + y + 2)
,

and in view of (6.4),

q2

gh3
=
u2

s(h)
gh

=
(h+ z)(h− z)2

2zh2
=

(y + 1)(y − 1)2

2y2
.

Therefore, inequality (6.6) is written as

(y + 1)(y − 1)2

2y
>

(y − 1)(y2 − 3y − 1)
y2 + y + 2

. (6.9)

For y > 1, the validity of inequality (6.9) follows from the formulas

(y2 − 1)(y2 + y + 2) − 2y(y2 − 3y − 1) = y4 − y3 + 7y2 + y − 2 = (y − 1)(y3 + 2y + 2) + 5y2 + y > 0.

Theorem 1 is proved.
7. Proof of Theorem 2. To prove Theorem 2, it suffices to show that the point C lies on the adiabat us

(see Fig. 3) below the point F , which is equivalent to the inequality hC < hF . By virtue of Theorem 1, the
adiabat us is above the curve v+

c in Fig. 3 and the adiabat vr, which passes through the points B and C, is strictly
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monotonically decreasing, hC < hB. This implies that the inequality hC < hF follows from the inequality hB < hF .
To prove the latter, we note that in view of (2.4), the depth hB, which will be denoted by H , is calculated by the
equation J(H, q) = J(hA, q) + δ, where q2 = h2

Av
2
A = gh3

A. The expansion of this equation has the form

h3
A/(2H

2) +H − z = 3hA/2 − h0, (7.1)

where z = z0 is the initial level ahead of the step.
Let us fix the depths h0 and hA ahead of the step and consider the depths H = hB and hF as functions of

the initial level z > h0. Since

lim
z→h0

H(z) = lim
z→h0

hF (z) = hA,

to prove the inequality H = hB < hF for z > h0 it suffices to show that

H ′
z < (hF )′z ∀z > h0. (7.2)

To calculate the derivative H ′
z, we differentiate Eq. (7.1) with respect to z. As a result, taking into account that

H > hA for z > h0, we obtain

H ′
z = 1 + h3

A/H
3 < 2 ∀z > h0. (7.3)

As shown in [20], hF (z) = z∗z, where z∗ is a constant defined by formula (4.1). This implies that

(hF )′z = z∗ > 3. (7.4)

A comparison of inequalities (7.3) and (7.4) yields the unknown inequality (7.2). Theorem 2 is proved.
Conclusions. The analysis of the problem of the flows resulting from the incidence of a discontinuous wave

on a bottom step showed that this problem is always solvable within the framework of the self-similar solutions of
shallow water theory but it is not uniquely solvable. If the constant flow (h1, v1) behind the front of the initial
discontinuous wave is supercritical and h1 > hP (see Fig. 5), i.e., if the parameters of the problem (1.5)–(1.8)
are above curves 3 in Fig. 6, this problem admits two different solutions with supercritical flow ahead of the step:
a solution of type C, in which the total energy is conserved at the step (this solution is shown by curve 1 in Fig. 4),
and a solution of type D, in which the total energy is lost at the step (this solution is given by curve 3 in Fig. 4).
For the stronger limitation hP < h1 < hG, i.e., if the parameters of the problem (1.5)–(1.8) lie between curves 3
and 4 in Fig. 6, this problem also admits a solution of type B with a reflected discontinuous wave and subcritical
flow ahead of the step. In this solution, which is shown by curve 2 in Fig. 2, the total energy is conserved at the
step.

The many-valuedness of the solutions of the problem (1.5)–(1.8) is due to the fact that the shallow water
equations are the long-wave approximation of the Euler equations [1, 4], by virtue of which the discontinuous shallow
water solutions can describe the entire transition regions of rapid changes in real-flow parameters. In particular,
discontinuous solutions above a bottom-level jump can be used to model wave flows in the cases where the bottom
level of a real channel undergoes a discontinuity or when it has a segment of sharp monotonic change. For example,
in [12], a bottom step in theory modeled a bottom level discontinuity in experiment, and in [9] a step in theory
modeled a sharp elevation of a shelf-type bottom in experiment. In both cases in the solution of the dam break
problem, theory is in good agreement with experiment for the possible types of waves, their propagation speeds,
and the asymptotic depths behind their fronts.

Using this approach to the problem considered in the present paper, it can be assumed that if the bottom
step (1.6) in theory corresponds to a bottom level discontinuity in experiment that offers the maximum possible
resistance to the incident flow, then in laboratory simulations of the problem (1.5)–(1.8) with the initial depth
h1 ∈ (hP , hG) (i.e, when the parameters of the problem are in the region of triple hysteresis located between
curves 3 and 4 in Fig. 6), one should expect the occurrence of wave flow of type B with a reflected discontinuous
wave. If, as in [9], the bottom step (1.6) models a monotonic elevation of a shelf-type bottom, then in an experiment
in which a discontinuous wave of depth h1 ∈ (hP , hG) behind its front is incident on this shelf, one might expect
the formation of flows of type C or D with supercritical flow ahead of the shelf. Thus in flows of type D, a standing
hydraulic jump forms on the shelf, at which part of the total energy of the incident flow becomes the energy
of vortical mixing, which is described in shallow water theory as a loss of the total energy. In flows of type C,
supercritical flow forms on the shelf, for which the total energy is conserved at the bottom step (1.6) in shallow
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water. In the case of the same initial depth h1 > hP , transition from flows of type D to flows of type C occurs when
the shelf steepness decreases. A more precise answer to the question of the conditions for the occurrence of flows
of type B, C, and D can be obtained from numerical simulations of the problem of the incidence of a discontinuous
wave on a shelf and from laboratory experiments using large tanks to produce a large initial level difference.

This work was supported by the foundation “Leading Scientific Schools of Russia” (Grant No. NSh-
902.2003.1), the Russian Foundation for Basic Research (Grant Nos. 04-01-00040 and 04-01-00253), and project
No. 9 of Basic Research Program No. 13 of the Presidium of the Russian Academy of Sciences.
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